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1. Introduction

Structures made of advanced composites such as fibre-reinforced plastics often consist of a
number of layers having unidirectional fibres. These layers, or laminates will generally be
orthotropic. When orthotropic laminates are stacked to form a laminate, the resulting structure is
generally anisotropic. The laminate will be orthotropic only for a certain stacking sequences.
Composites offer high specific strength and stiffness. One of the main disadvantages of laminated
composite materials is the existence of coupling responses such as stretching–shearing, stretching–
bending, stretching–twisting, shearing–twisting and bending–twisting. The degree of these
coupling effects depends very much on the stacking sequence of the lamination. The specially
orthotropic condition occurs when no coupling responses are present and this is achieved by
having all plates at 0� or 90� or symmetric cross-ply. The measurement of stiffness for composite
materials is more difficult than for isotropic cases. When restricting the subject to symmetric
plates, it is well known that the elastic behavior of such structures is characterized by a set of six
in-plane rigidities and six flexural rigidities. The flexural deformations are dependent on the
material elastic constants in accordance with classical lamination theory. These elastic constants
include the longitudinal Young’s modulus (Exx), transverse Young’s modulus (Eyy), major the
Poisson ratio (nxy), minor the Poisson ratio (nyx), and the in-plane shear modulus (Gxy). Of the five
constants named only four are independent since nxy=Exx ¼ nyx=Eyy due to symmetry of the
compliance matrix. The use of composite materials for engineering applications thus requires
the determination of their properties for the analysis, manufacture and quality control of the
materials. If vibrations are induced in a specially orthotropic plate, then its dynamic response will
be a function of plate geometry, density, boundary conditions and the elastic constants. This
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implies the possibility of using plate vibrations theory to develop a non-destructive test to
determine the elastic constants of a specially orthotropic plate [1–3].
In this paper, a technique through vibration testing for the determination of the properties of

thin specially orthotropic plates is discussed. The precision of the elastic constants determination
in the present study, is linked to the accuracy of the eigenvalue calculation. Knowing that only the
natural frequencies experimentally determined are to be calculated, we need a fast means to
approximate and hence identify the eigenvalues corresponding to given model indices. An
expression is derived for the determination of the natural frequencies of thin specially orthotropic
rectangular plates. A single term expression having characteristic beam functions of a free–free
beam, is considered for the deflection function to derive the frequency expression through
Rayleigh–Ritz method. Experimentally determined natural frequencies of free–free thin
rectangular plates are used in conjunction with the derived expression to determine the properties
of the thin specially orthotropic plates under consideration.

2. Frequency expression for a free–free thin specially orthotropic rectangular plates

The purpose of the present study is to examine the possibility of determining the elastic
constants of an orthotropic material from the results of a single non-destructive test of free
vibration of a thin specially orthotropic rectangular plate. The plate is supposed to be perfectly
rectangular, with its length equal to a; its width equal to b and its thickness, h is constant and
small compared to the other dimensions. Moreover, we suppose that the material is elastic and
homogeneous and that damping can be neglected.
The partial differential equation governing the transverse vibration of a thin specially

orthotropic rectangular plate is

D11
@4w

@x4
þ 2ðD12 þ 2D66Þ

@4w

@x2@y2
þ D22

@4w

@y4
¼ rh

@2w

@t2
: ð1Þ

The bending stiffnesses, D11; D12 and D22 and torsional stiffness, D66; are defined in terms of ply
thickness and stiffness. Henceforth, all four terms are referred as bending stiffness, with the
understanding that D66 is actually a torsional stiffness. The bending–stretching and bending–
twisting coupling coefficients in Eq. (1) are absent for the case of a thin specially orthotropic
rectangular plates. Eq. (1) cannot normally be solved to determine the natural frequencies and
mode shapes of a rectangular plate with any combination of boundary conditions. An
approximate technique must, therefore, be used for the calculation of the natural frequencies.
Rayleigh’s quotient provides an estimate of the fundamental frequency, o; in terms of the

maximum potential energy, Umax; material density, r; assumed mode shape, wðx; yÞ; plate
thickness, h; and plate dimensions a; and b: An expression for the maximum potential energy,
Umax; derived for a rectangular plate in a state of transverse vibration following the classical
lamination theory is

Umax ¼
1

2
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For a conservative system, the maximum potential energy equals the maximum kinetic energy

Tmax ¼ 1
2
rho2

mn

Z a

0

Z b

0

w2 dy dx: ð3Þ

This relationship may be re-arranged to form Rayleigh’s quotient as

o2
mn ¼

2

rh

UmaxR a

0

R b

0 W 2 dy dx

( )
: ð4Þ

The natural frequencies are obtained by assuming the deflected form of the vibrating plate as

w ¼ AmnfmðxÞynðyÞ: ð5Þ

The functions fmðxÞ and ynðyÞ which have been chosen to represent the deflected form (Eq. (5))
of the vibrating plate are those, which represent the normal modes of vibration of uniform beams.
They were chosen because the nodal patterns, which correspond to the natural frequencies of
rectangular plates, take the form of lines, which are approximately parallel with the edges of the
plate. The nodal patterns can be defined, therefore, by the notation m=n; in which m is the number
of nodal lines in the x direction and n is the number of the nodal lines in the y direction.
Defining x ¼ x=a; Z ¼ y=b; l ¼ a=b; and using Eq. (5) in Eq. (4), the natural frequency of mode

m=n can be obtained from the following expression:

rha4 o2
ij ¼ aijD11 þ 2l2bijD12 þ l4gijD22 þ 4l2dijD66; ð6Þ

where

aij ¼

R 1

0
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00
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; ð7Þ
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gij ¼

R 1

0
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0 ðfi
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R 1

0 ðfiyjÞ
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dij ¼

R 1

0

R 1

0 ðf
0
i
’yjÞ

2 dZ dxR 1

0

R 1

0 ðfiyjÞ
2 dZ dx

: ð10Þ

Primes denote differentiation with respect to x and over dots denote differentiation with respect
to Z:
The deflection functions in Eq. (5) as the product of beam functions are chosen as the

fundamental mode shapes of having the boundary conditions of the plate. This choice of
functions then exactly satisfies all boundary conditions for the plate, except in the case of free
edge, where the shear condition is approximately satisfied. Since the problem under consideration
is towards the development of an expression for the determination of natural frequencies of free–
free rectangular plates, fi and yi represent the same mode shape. Hence, we need to obtain any
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one of the functions.The mode shape yðZÞ for the free–free condition is obtained by solving

d4yn

dZ4
� l4nyn ¼ 0: ð11Þ

With boundary conditions

d2yn

dZ2
¼

d3yn

dZ3
¼ 0 at Z ¼ 0; ð12Þ

d2yn

dZ2
¼

d3yn

dZ3
¼ 0 at Z ¼ 1: ð13Þ

The general solution of Eq. (11) is of the form

ynðZÞ ¼ A cosh ln Zþ B sinh lnZþ C cosh lnZþ D sinh lnZ: ð14Þ

Substituting Eq. (14) in the boundary conditions (12) and (13), we obtain

A � C ¼ 0; ð15Þ

B � D ¼ 0; ð16Þ

Aðcosh ln � cos lnÞ þ Bðsinh ln � sin lnÞ ¼ 0; ð17Þ

Aðsinh ln þ sin lnÞ þ Bðcosh ln � cos lnÞ ¼ 0: ð18Þ

From Eqs. (17) and (18), we get a condition

1� cosh ln cos ln ¼ 0 ð19Þ

for obtaining the eigenvalues, ln:
The first six eigenvalues (ln; n ¼ 1; 2; 3; 4; 5; 6) obtained by solving Eq. (19) through Newton–

Raphson iterative scheme are 0, 4.73004, 7.8532, 10.9956, 14.13716 and 17.27876, respectively.
From Eqs. (15)–(18), the constants B; C and D are written in terms of A as

B ¼ �rnA; C ¼ A; D ¼ �rnA; ð20222Þ

where rn ¼ ðsinh ln þ sin lnÞ=ðcosh ln � cos lnÞ:
Substituting B; C and D in terms of A in Eq. (14) and usingZ 1

0

y2n dZ ¼ 1 ð23Þ

the constant A is determined.
The mode shape ynðZÞ for the free–free conditions is

ynðZÞ ¼ cosh lnZ� cos ln Z� rnðsinh lnZþ sin lnZÞ: ð24Þ

Eq. (24) is used to obtain mode shape functions for all non-zero eigenvalues.
For the case of zero eigenvalue, the symmetric and antisymmetric mode shape functions are

y1ðZÞ ¼ 1; ð25Þ

y2ðZÞ ¼
ffiffiffi
3

p
ð1� 2ZÞ: ð26Þ
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The mode shape fmðxÞ for the present study is

fmðxÞ ¼ ymðxÞ: ð27Þ

By using the mode shape functions fiðxÞ and yjðZÞ in Eqs. (7)–(10), and integrating analytically,
the values of aij; bij ; gij and dij are obtained. With these values, the frequencies (oij) are determined
directly from the frequency expression (6) for the free–free specially orthotropic rectangular plate.
The adequacy of the analytical expression (6) for computing the natural frequencies, is

examined for the case of a free–free square plate. A finite element solution is obtained by using an
eight-noded quadrilateral isoparametric shell element available in the well-known finite element
code, COSMOS. Finite element idealization for a free–free aluminium alloy square plate has been
made with four hundred element to carry out free vibration analysis. Dimensions of the plate are
a ¼ b ¼ 254mm and h ¼ 3:16mm. Material properties assumed in the analysis for aluminium
alloy are E11 ¼ E22 ¼ 72:4GPa; G12 ¼ 28GPa; n12 ¼ 0:33 and r ¼ 2770 kg/m3. Fig. 1 shows the
comparison of natural frequencies of the analytical expression (6) with those obtained from the
first 27 eigenvalues of the finite element analysis. It is seen that the estimate of the natural
frequencies through an approximate expression (6) were found to be higher than those obtained
from the finite element analysis.
It is a fact that natural frequencies obtained using the Rayleigh–Ritz method are always higher

than the exact values due to the assumed plate mode shape, which inherently increase the rigidity
of the plate. The deflection function, wðx; yÞ is assumed in general as a linear series of admissible
functions and adjusting the coefficients in the series so as to minimize Eq. (4). When this deflection
function is substituted in Eq. (4), the right-hand side becomes a function of the coefficients of the
admissible functions. Taking the partial derivative with respect to each coefficient and equating to
zero minimize this. Thus we arrive a system of linear homogeneous equations in the unknown
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Fig. 1. Comparison of natural frequencies of a free–free aluminium alloy square plate.
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coefficients of the admissible functions. The natural frequencies, omn are determined from the
condition that the determinant of the system must vanish. Deobald and Gibson [1] have used
36-terms characteristic beam functions to postulate the deflected shape, and obtained the results
comparable to the finite element solution for plate configurations with different boundary
conditions. Hence, the accuracy of the Rayleigh–Ritz method depends on the selection of
compatible shape functions, which satisfy the geometrical boundary conditions of the plate. A
single-term expression (5) having free–free beam characteristic functions fmðxÞ and ynðyÞ; is
chosen here for the deflection function while deriving the frequency expression (6). For the
specified elastic constants, the frequency expression (6) results higher values compared to those of
finite element solutions. It is obvious that prediction of elastic constants for the measured
frequency values from the frequency expression (6), results lower values. To improve the accuracy,
the frequency expression (6) has to be modified by introducing influence coefficients, through
finite element solutions.

3. Modified frequency expression

In general, the actual natural frequencies will lie below the Rayleigh–Ritz solution and above
the finite element solution. The discrepancy between the finite element solution and the present
single term Rayleigh–Ritz solution is mainly due to the assumed mode shape. Using the natural
frequencies of finite element solution, the frequency expression (6) is modified by introducing
influence coefficients. These influence coefficients are obtained by fitting the natural frequencies of
the aluminium alloy square plate from the eigenvalues of the finite element solution, in the
frequency expression (6) through least square curve fit. Now the modified frequency expression is

rha4o2
ij ¼ f1aijD11 þ 2f2l

2bijD12 þ f3l
4gijD22 þ 4f4l

2dijD66: ð28Þ

The influence coefficients in Eq. (28) for free–free rectangular plate are f1 ¼ 0:98946; f2 ¼ 1:0838;
f3 ¼ 0:90982; and f4 ¼ 0:85068: Fig. 2 shows a reasonably good comparison of the present finite
element results with those obtained from the modified frequency expression (28). The adequacy of
the modified frequency expression (28) is examined further by considering the analytical natural
frequencies of Ref. [1] on aluminium and graphite/epoxy square plates. The dimensions of square
plates are a ¼ b ¼ 254mm and h ¼ 3:16mm for aluminium plate whereas h ¼ 1:483mm for
graphite/epoxy plates. The properties of aluminium plate are E11 ¼ E22 ¼ 72:4GPa; G12 ¼
28GPa; n12 ¼ 0:33; r ¼ 2770 kg/m3. The properties of graphite/epoxy plate are E11 ¼ 127:9GPa;
E22 ¼ 10:27GPa; G12 ¼ 7:32GPa; n12 ¼ 0:22; r ¼ 1584 kg/m3. Figs. 3 and 4 show the comparison
of natural frequencies of aluminium and graphite/epoxy square plates using the modified
frequency expression (28) with those presented in Ref. [1] through a SAP IV finite element model
and 36 terms Rayleigh–Ritz model. It is found that the results of frequency expression (28) for
graphite/epoxy plate closely match with finite element results of Ref. [1]. Tables 1–3 show a
reasonably good comparison of the results obtained from the modified frequency expression (28)
with those of experimental results from aluminium alloy square plate [1], glass/epoxy rectangular
plate [2], and carbon/epoxy square plate [3]. The natural frequencies obtained from the frequency
expression (6), which does not include influence coefficients, were found to be comparatively
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higher than test results. The modified frequency expression (28) estimates reasonably accurate
natural frequencies for free–free specially orthotropic rectangular plates.
It should be noted that the direct application of the calculus of variation to minimize Eq. (4)

lead to the partial differential Eq. (1) for a vibrating plate. The characteristic beam functions used
in the present study satisfies the geometric boundary conditions of a free–free rectangular plate.
The bending and torsion stiffness (D11; D12; D22 and D66) in Eq. (28) will take care of the isotropic
as well as specially orthotropic plate materials.
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4. Evaluation of elastic constants

The discrepancy between the analytical and experimental natural frequencies may be attributed
to various factors. For the specified geometric and material properties, natural frequencies of a
free–free orthotropic thin rectangular plate can be obtained using the modified frequency
expression (28). An attempt is made here to evaluate the elastic constants from the measured
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Table 1

Natural frequencies (Hz) of a free–free aluminium alloy square plate a ¼ b ¼ 254mm; h ¼ 3:16mm E11 ¼
E22 ¼ 72:4GPa; G12 ¼ 28GPa; n12 ¼ 0:33; r ¼ 2770 kg/m3

Mode Test

results [1]

Frequency expression without influence

coefficients

Frequency expression with influence

coefficients

Eq. (6) Relative error (%) Eq. (28) Relative error (%)

(2,2) 156.7 171.71 �9.6 158.37 �1.1

(1,3) 232.5 272.67 �17.3 260.09 �11.9

(3,1) 300.4 272.67 9.2 271.23 9.7

(2,3) 411.7 442.64 �7.5 413.61 �0.5

(3,2) 411.7 442.64 �7.5 420.70 �2.2

(1,4) 744.9 751.64 �0.9 716.95 3.8

(4,1) 744.9 751.64 �0.9 747.67 �0.4

(3,3) 755.7 815.39 �7.9 764.04 �1.1

(4,2) 821.8 912.47 �11.0 886.95 �7.9

(2,4) 936.5 912.47 2.6 861.21 8.0
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Fig. 4. Comparison of natural frequencies of graphite/epoxy using the modified frequency expression (28) with SAP IV
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natural frequencies using the modified frequency expression (28). To determine the four elastic
constants (namely, E11; E22; G12 and n12), a minimum of four measured frequencies is essential.
The bending stiffnesses, D11; D12; D22 and D66 are obtained by substituting these four measured
frequencies in Eq. (28). From these bending stiffnesses, the four elastic constants are obtained
using the following equations:

E11 ¼
12

h2
D11 �

D2
12

D22

� �
; ð29Þ
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Table 2

Natural frequencies (Hz) of a free–free glass/epoxy rectangular plate a=240.1mm; b ¼ 180:4mm; h ¼ 1:84mm

E11 ¼ E22 ¼ 69:88GPa; G12 ¼ 28:7GPa; n12 ¼ 0:217; r ¼ 2460 kg/m3

Mode Test

results [2]

Frequency expression without influence

coefficients

Frequency expression with influence

coefficients

Eq. (6) Relative error (%) Eq. (28) Relative error (%)

(2,2) 151.00 160.00 �6.0 147.57 2.3

(3,1) 174.25 179.13 �2.8 178.19 �2.3

(1,3) 317.75 317.13 0.1 302.67 4.7

(3,2) 352.25 371.00 �5.3 348.63 1.0

(2,3) 431.00 454.13 �5.4 425.91 1.2

(4,1) 497.25 493.79 0.7 491.18 1.2

(4,2) 666.75 690.06 �3.5 662.51 0.6

(1,4) 872.00 874.68 �0.3 834.31 4.3

(5,1) 964.75 968.02 �0.3 962.90 0.2

(2,4) 985.75 998.71 �1.3 945.38 4.1

(5,2) 1132.00 1155.72 �2.1 1125.29 0.6

(6,1) 1586.50 1600.19 �0.9 1591.73 �0.3

(1,5) 1718.50 1714.73 0.2 1635.59 4.8

Table 3

Natural frequencies (Hz) of a free–free carbon/epoxy square plate a ¼ b ¼ 200mm; h ¼ 1:0mm E11 ¼ 120GPa;

E22 ¼ 10GPa; G12 ¼ 4:9GPa; n12 ¼ 0:3; r ¼ 1510 kg/m3

Mode Test

results [3]

Frequency expression without influence

coefficients

Frequency expression with influence

coefficients

Eq. (6) Relative error (%) Eq. (28) Relative error (%)

(2,2) 47.5 49.66 �4.5 45.80 3.6

(1,3) 65.7 66.38 �1.0 63.32 3.6

(2,3) 117.4 120.72 �2.8 112.51 4.2

(1,4) 180.4 182.98 �1.4 174.54 3.2

(3,1) 227.9 229.95 �0.9 228.74 �0.4

(2,4) 232.6 236.36 �1.6 222.50 4.3

(3,2) 247.1 251.09 �1.6 246.92 0.1

(3,3) 306.2 316.24 �3.3 304.73 0.5

(1,5) 354.9 358.72 �1.1 342.16 3.6
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E22 ¼
12

h2
D22 �

D2
12

D11

� �
; ð30Þ

n12 ¼
D12

D22
; ð31Þ

G12 ¼
12

h2
D66: ð32Þ

5. Results and discussion

The accuracy in the elastic constants depends heavily on the measured frequencies. Deobald
and Gibson [1] have considered four sets of measured frequencies to obtain the elastic constants
and obtained negative the Poisson ratio. These may be mainly due to consideration of erroneous
measured frequency data. It is very difficult to know in advance about the accuracy in the
measured frequencies. Under these circumstances, it is better to consider the measured frequencies
as many as possible and determine the elastic constants. These constants are used in Eq. (28) and
dropped the data whichever showed large discrepancy between analytical and experimental
results. The bending stiffnesses are determined through least square curve fit by considering the
measured frequency data and comparable with the analytical expression. The four elastic
constants are obtained using these bending stiffnesses. Strictly speaking, D12ð¼ n12D22 ¼ n21D11Þ
is not independent. If it is treated as independent bending stiffness, then there is a possibility of
obtaining negative the Poisson ratio due to inaccurate measured frequencies.
The bending stiffnesses in Eq. (28) corresponding to the measured frequencies are evaluated

through an iterative process, which was continued till standard error

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
1�

analysis result

test result


 �2

i

s
ð33Þ

attains a minimum value. Here, N is the number of measured frequencies. Table 4 gives elastic
constants obtained from the measured frequency data of Tables 1–3, which are comparable to
those specified. The difference in the estimate of elastic constants using frequency expressions (6)
and (28) is mainly due to influence coefficients. The discrepancy between the estimates of elastic
constants and the specified values is mainly due to measured natural frequencies, which were
slightly different from those estimated from the frequency expression. Table 5 gives the
comparison on the estimate of elastic constants from the measured frequencies of Ref. [1] with the
specified values. The present analysis results are also comparable with those specified elastic
constants of Ref. [1].
In general, estimates of the elastic constants from the specified natural frequencies using Eq. (6)

are lower than those obtained from the modified frequency expression (28). The influence
coefficients in the modified frequency expression (28) depend on the boundary conditions of the
plate. For the case of a free–free plate, the squared frequency values from the finite element
analysis were found to be slightly lower than those obtained from the frequency expression (6),
which is derived using a single term deflection function. Hence, the influence coefficients in

ARTICLE IN PRESS

K.G. Muthurajan et al. / Journal of Sound and Vibration 272 (2004) 413–424422



Eq. (28) for free–free plate configurations vary from 0.85 to 1.08, and the values of natural
frequencies from Eqs. (6) and (28) will have a maximum of 5% difference. The large discrepancy
in the results of analytical and experimental results is mainly due to the assumed elastic constants.
It can be seen from the results presented in Table 5 that the use of influence coefficients in the
frequency expression, improve the estimates of the elastic constants compared to those obtained
in Ref. [1]. The modified frequency expression (28) is one of the fast means to identify the
eigenvalues of the model indices close to the exact. The method of evaluation of elastic constants
from the measured frequencies in the present study is different from those followed in Refs. [1–3].
In the present analysis, all the measured natural frequencies of the plate are considered while
evaluating the elastic constants. In Ref. [1], several sets of the measured natural frequencies were
made and obtained directly the four elastic constants for each set having four measured
frequencies, and presented average values of the elastic constants. Inaccuracy in any one of the
minimum required four measured natural frequencies in a set, may cause absurd estimates of
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Table 4

Comparison of elastic constants obtained from the measured frequencies in Tables 1–3 using frequency expressions (6)

and (28) to examine the impact of influence coefficients

Elastic

constants

Materials

Aluminium Glass/epoxy Carbon/epoxy

Without

influence

coefficient

Eq. (6)

With

influence

coefficient

Eq. (28)

Without

influence

coefficient

Eq. (6)

With

influence

coefficient

Eq. (28)

Without

influence

coefficient

Eq. (6)

With

influence

coefficient

Eq. (28)

E11 (GPa) 72.16 74.50 67.65 69.17 117.11 118.70

E22 (GPa) 66.68 71.74 68.51 73.19 9.76 10.52

n12 0.33 0.31 0.23 0.21 0.28 0.26

G12 (GPa) 25.55 27.30 26.19 29.78 4.53 5.15

Table 5

Comparison of elastic constants obtained from the measured frequencies of Ref. [1] using the frequency expression (28)

with the specified values of Ref. [1]

Elastic

constants

Aluminium Graphite/epoxy

Specified value

Ref. [1]

Estimated Specified value

Ref. [1]

Estimated

Ref. [1] Present study Ref. [1] Present study

E11 (GPa) 72.40 69.50 74.50 127.90 125.20 127.79

E22 (GPa) 72.40 69.90 71.74 10.27 10.30 10.79

n12 0.33 0.36 0.31 0.22 �0.24 0.19

G12 (GPa) 28.00 25.60 27.30 7.31 6.60 6.95
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elastic constants. It is preferable to use more measured natural frequencies than the minimum of
four required, while evaluating the elastic constants.

6. Conclusion

This paper discusses the determination of elastic constants, through vibration testing, of thin
specially orthotropic plates with free boundary conditions. The natural frequencies obtained from
Eq. (6) using the Rayleigh–Ritz method with a single term expression having characteristic
functions of a free–free beam for the deflection function of the plate, are always higher than the
exact values. Influence coefficients are introduced in the frequency expression through least square
curve fit of the natural frequencies of aluminium plate from a finite element solution. The
modified frequency expression having influence coefficients is validated through the finite element
solution of Ref. [1], related to graphite/epoxy plates. The four elastic constants Young’s modulus
(Exx), transverse Young’s modulus (Eyy), major the Poisson ratio (nxy), and the in-plane shear
modulus (Gxy) of a specially orthotropic material have been found through measured frequencies
from a single vibration test. The modified frequency expression is useful for the evaluation of
natural frequencies of free–free specially orthotropic rectangular thin plates.
The influence coefficients in the modified frequency expression (28) depend on the boundary

conditions of the vibrating plate. For the case of free–free rectangular plates, the squared
frequency values of the finite element solutions were found to be slightly lower than those
obtained from Eq. (6). Thus, estimates of elastic constants from the natural frequencies using
Eqs. (6) and (28) showed little variation. For vibrating plates with other supporting conditions,
the influence coefficients will be different and appreciable variation in frequency values can be
expected from Eqs. (6) and (28). However, we need fast means to approximate and identify the
eigenvalues corresponding to given model indices, which is possible through the modified
frequency expression (28).
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